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A B S T R A C T   

China has undergone momentous changes and achieved remarkable economic progress since its economic reform 
and opening-up in 1978. However, the consequent resource depletion and environmental degradation have 
seriously restricted China’s potential for sustainable industrial development. As a practical tool contributing to 
sustainable development, the concept of eco-efficiency is considered increasingly important for reducing the 
trend of resource exhaustion and environmental degradation. This study first evaluated industrial eco-efficiency 
in 30 Chinese provinces during 2005–2015 using data envelopment analysis (DEA), and then identified the 
determinants of the resulting eco-efficiency scores using random-effects Tobit regression analysis. The DEA re
sults showed that although China’s overall industrial eco-efficiency trend was upward, there were great dis
parities between provinces. Provinces with high industrial eco-efficiency were mainly distributed across the 
eastern region, while those in the often economically less developed western region had lower industrial eco- 
efficiency due to technological deficits and weak environmental policies. The Tobit regression results indi
cated that internal research and development expenditure in industrial enterprises, per capita gross regional 
product, and investment in wastewater treatment had positive effects on provincial industrial eco-efficiency. By 
contrast, the proportion of state-owned enterprises and investment in waste gas treatment had negative impacts. 
These findings provide valuable insights that can help provinces with low industrial eco-efficiency to pursue 
high-quality, green development.   

1. Introduction 

1.1. Background 

China has undergone momentous changes and achieved remarkable 
economic progress since its economic reform and opening-up in 1978. 
The industrial added value rapidly increased sixfold, from 4.03 trillion 
yuan in 2000 to 23.65 trillion yuan in 2015 (National Bureau of Sta
tistics of China, 2015). Undoubtedly, this rapid industrial growth has 
greatly contributed to China’s economic development. However, the 
consequent resource depletion and environmental degradation have 
seriously restricted the country’s potential for sustainable economic 
development. China’s industrial energy consumption in 2015 was 2.8 
times higher than in 2000 (National Bureau of Statistics of China, 2015). 
Therefore, the Chinese government must improve the balance between 

economic development, environmental protection, and energy conser
vation. China previously emphasized economic development above all 
since its economic reform and opening-up depended on it. In recent 
years, however, the government has started to promote environmental 
control policies, enacting a number of environmental laws and regula
tions aimed at protecting the environment and achieving sustainable 
development. 

As a practical tool contributing to sustainable development, the 
concept of eco-efficiency is increasingly considered to be of great 
importance due to its potential to reduce the trend of resource exhaus
tion and environmental degradation. Furthermore, to provide govern
ments with practical information to support policymaking related to 
environmental sustainability, it is important to correctly evaluate in
dustrial eco-efficiency and identify its determinants. To contribute to 
this effort, this empirical study adopted a two-stage estimation 
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approach, evaluating industrial eco-efficiency scores in China at the 
provincial level and then analyzing the factors that influence these 
scores. 

1.2. Literature review 

The concept of eco-efficiency was introduced by Stefan and Andreas 
(1990). It is widely accepted that eco-efficiency is achieved by deliv
ering competitively priced goods and services that satisfy human needs 
and improve people’s quality of life while progressively reducing 
ecological impacts and resource intensity to a level at least in line with 
the earth’s estimated carrying capacity (Lehni et al., 2000). In other 
words, eco-efficiency refers to creating more value with less environ
mental impact. Since eco-efficiency requires comprehensive coordina
tion of the economy, natural resources, and the environment, pursuing 
more efficient production methods and reducing resource consumption 
and undesirable outputs (i.e., the environmental impact) should be 
considered simultaneously (Huang et al., 2018). Eco-efficiency can also 
be seen as an effective tool for measuring environmental performance 
(Ball and Lunt, 2020), generally measured as the ratio of the value of 
what has been produced (e.g., gross domestic product [GDP]) to the 
environmental effects of that production. A growing body of literature 
has demonstrated the importance of eco-efficiency. For instance, Huang 
et al. (2018) showed that eco-efficiency plays an important role in 
facilitating regional sustainable development. More crucially, 
measuring eco-efficiency provides critical information for formulating 
policies that can be integrated into local economic activities and the 
environment for more sustainable development (Toma et al., 2016). 

Data envelopment analysis (DEA) is a method of summarizing 
various desirable and undesirable effects of production in a single effi
ciency index. Hence, DEA can be a useful tool for identifying and 
comprehensively characterizing efficiency by simultaneously consid
ering multiple inputs and outputs. This approach has been applied in 
various fields. With regard to energy and industrial efficiency, for 
instance, Hu and Wang (2006) analyzed the energy efficiency of 29 
provinces in China for the period 1995–2002 using a traditional DEA 
and revealed that regional energy efficiency generally improved during 
the research period, except for the western part of the country. Chen and 
Golley (2014) combined a standard DEA with the directional distance 
function to estimate the “green” total factor productivity growth of 38 
Chinese industrial sectors from 1980 to 2010 and found that Chinese 
industry was not yet on a path to sustainable, low-carbon growth. 
Furthermore, to evaluate industrial eco-efficiency, Dai et al. (2016) 
employed a super-efficiency DEA model, while Huang et al. (2018) 
constructed a modified DEA model. Both studies showed that provinces 
in eastern China had relatively high industrial eco-efficiency. Likewise, 
Xing et al. (2018a) used a traditional DEA, along with an economic 
input–output lifecycle assessment, to measure the eco-efficiency of 26 
industrial sectors in China, showing that over 70% of them were inef
ficient and required significant improvement. DEA has thus been widely 
used to compare a set of homogeneous decision making units (DMUs) by 
evaluating their relative efficiency (Ebrahimnejad et al., 2014). A 
common feature of the above studies is that they explored efficiency 
scores according to various types of DEA but did not analyze the de
terminants of the scores. 

Clarifying the possible determinants of efficiency can provide the 
government or enterprises with important information to effect im
provements. Hence, some studies have further explored the de
terminants of efficiency scores calculated using DEA. Lv et al. (2012) 
used a sample of 30 provinces for the period 1998–2009 to measure 
Chinese regional energy efficiency change and its determinants using a 
basic DEA and a random-effects Tobit regression model. Their Tobit 
regression analysis showed that electricity consumption as a proportion 
of total energy consumption and the proportion of state-owned indus
trial output relative to an area’s gross industrial output had positive 
impacts on energy efficiency, while the percentage of the added value of 

the secondary industry as a proportion of GDP had a negative effect. 
Likewise, Pan et al. (2013) used an extended DEA model and a random- 
effects Tobit regression model to explore China’s provincial industrial 
energy efficiency and its determinants. Their regression analysis showed 
that higher energy efficiency resulted from a higher marketization level, 
a higher per capita GDP, higher research and development (R&D) 
expenditure per capita, and a lower percentage of coal consumption. 
However, although Lv et al. (2012) and Pan et al. (2013) used a two- 
stage approach, they focused on energy efficiency without comprehen
sively considering undesirable outputs (i.e., environmental issues), such 
as carbon dioxide (CO2) and waste emissions, which is inadequate when 
evaluating the degree of sustainable industrial development. Other 
studies have also used regression analysis as a second-stage method to 
explore the determinants of efficiency scores calculated using DEA. By 
applying the regression method, studies have identified determinants of 
efficiency in various sectors, such as industrial sectors (Chen and Golley, 
2014), Chinese banking (Huang et al., 2014), and tomato production 
(Raheli et al., 2017). 

1.3. Purpose 

The purpose of this study was to elucidate the development trend of 
industrial eco-efficiency in 30 provinces of China and identify effective 
ways to achieve sustainable industrial development. To that end, this 
study used a DEA model to evaluate provincial industrial eco-efficiency 
and a regression model to reveal the determinants of the resulting eco- 
efficiency scores. Furthermore, since previous studies have only calcu
lated eco-efficiency scores without providing detailed explanations of 
the results based on region-specific characteristics, this study selected 
five northern Chinese provinces to obtain further insights into the eco- 
efficiency scores. The results will allow policymakers to integrate eco
nomic activities and better protect the environment. 

The remainder of this paper is organized as follows. Section 2 out
lines the data and methods, including the DEA and random-effects Tobit 
models. Section 3 presents the results of the provincial industrial eco- 
efficiency scores evaluated using DEA, as well as the determinants of 
eco-efficiency. Section 4 discusses the results. Section 5 concludes the 
paper and outlines its policy implications. 

2. Data and methods 

For the empirical analysis, a DEA was used to calculate the regional 
industrial eco-efficiency scores, and then regression analysis was per
formed to identify their determinants. Panel data were used for both 
analyses. 

2.1. Variables and data 

This section describes the variables selected as inputs and outputs for 
the DEA model to evaluate China’s industrial eco-efficiency and the 
determinants used in the random-effects Tobit model. The sample con
sisted of 30 provincial-level administrative units (provinces) in main
land China1 from 2005 to 2015 (on an annual basis); thus, this study 
used panel data. See Supplementary Material for the data used in the 
analyses. 

2.1.1. Input and output variables and data used in the DEA model 
This study considered both the representativeness and the avail

ability of data to comprehensively evaluate the eco-efficiency of Chinese 

1 This study did not include the Tibet Autonomous Region of mainland China 
due to data unavailability. Likewise, the two Special Administrative Regions 
(Hong Kong and Macau) were not considered because they have completely 
different economic systems from that of mainland China, which makes com
parisons difficult. 
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provincial industries. In the selection of variables for the DEA model, 
industrial added value, representing the economic value produced by 
industrial production, was selected as the desirable output variable. 
Environmental burdens, namely, waste gas, wastewater, solid waste, 
and CO2 emissions, were used as undesirable output variables (Chen and 
Golley, 2014; Feng and Wang, 2017; Lv et al., 2012). 

Capital and labor were selected as input variables because they are 
indispensable for producing economic value (Feng and Wang, 2017; 
Matsumoto et al., 2020; Zhao et al., 2020).2 The model also included 
energy and water consumption as crucial inputs for industrial produc
tion (Hu and Wang, 2006; Zou and Cong, 2021). 

As no officially published data exist for industrial CO2 emissions, 
they were calculated as follows: 

CARBr =
∑

j
CARBrj = FUELrj × SCj × SECj ×

44
12

(1)  

where CARB represents CO2 emissions (in tons of CO2), FUEL represents 
the total industrial consumption of different energy types (in tons), SC 
represents the conversion coefficient for standard coal for different en
ergy types (in tons of standard coal per ton of energy), SEC denotes the 
carbon emission coefficient (in tons of carbon per ton of standard coal), r 
represents the province, and j is the type of fossil fuel. 

The coefficients for standard coal conversion and carbon emissions 
by energy type are shown in Table 1. 

Table 2 shows the details of the input and output variables and the 
data sources, as well as the descriptive statistics. Figure 1 shows the 
aggregated time-series trends for the input and output variables of the 
examined provinces. The number of observations for the DEA was 330. 
The details of the data sources are shown in Table A1. 

2.1.2. Possible determinants and data used in the random-effects Tobit 
model 

For the random-effects Tobit regression analysis, six independent 
variables were selected to represent determinants with potentially sig
nificant impacts on industrial eco-efficiency according to the DEA: per 
capita gross regional product (GRP), internal R&D expenditure of in
dustrial enterprises (R&D), investment in wastewater treatment (IWW), 
investment in waste gas treatment (IWG), investment in solid waste 

treatment (IWS), and the proportion of state-owned enterprises (PSO). 
The data sources and descriptive statistics for all independent variables 
(i.e., possible determinants) are displayed in Table 3. Figure 2 shows the 
aggregated time-series trends for the independent variables of the 
examined provinces. 

The reasons for selecting these variables as possible determinants of 
industrial eco-efficiency are as follows. Per capita GRP may have a 
positive impact on industrial eco-efficiency as a proxy for economic 
development. With an increase in per capita GRP, residents’ expecta
tions of the quality of the environment also increase, and the protection 
of the environment becomes more important in public opinion. This 
prompts enterprises to adopt cleaner modes of production. 

The internal R&D expenditure of industrial enterprises may also have 
a positive impact on industrial eco-efficiency. Previous studies have 
found that R&D has a significant positive effect on the environment 
(Matsuoka, 2009; Xing et al., 2018b; Zhao et al., 2019). Industrial R&D 
is the main driver of innovation, and internal expenditure on R&D can 
function as a key indicator for monitoring the resources allocated to 
science and technology (Savrul and Incekara, 2015). In this study, R&D 
investment was considered to have a positive impact on industrial eco- 
efficiency because environmental performance is closely related to 
technological progress. A one-year lag (e.g., 2004 data were used for 
2005) was applied in the regression model to allow enough time for R&D 
expenditure to take effect. 

Investment in industrial pollution control may also have a positive 
impact on industrial eco-efficiency, as its objective is to reduce pollu
tion. In this study, three aspects of investment in industrial pollution 
control were considered: wastewater treatment, waste gas treatment, 
and solid waste treatment. These factors can contribute to improving 
industrial eco-efficiency by reducing various pollutants. A one-year lag 
was also applied in the regression model. 

The proportion of state-owned enterprises may have a negative 
impact on industrial eco-efficiency. Research has shown that state- 
owned enterprises are less efficient than other types of enterprises (Liu 
et al., 2020). One reason is that state-owned enterprises are considered 
to be indirectly owned by the people, and such an ambiguous definition 
of ownership leads to excessive consumption of resources by the state, 
managers, and workers (Lin et al., 2020). Another reason is that the 
controlling shareholder of state-owned enterprises is the government, 
whose primary aim is not to pursue economic and environmental ben
efits but to maintain social stability, for example, by reducing unem
ployment and wage gaps (Lin et al., 1998). Accordingly, a higher 
proportion of state-owned enterprises may result in a lower industrial 
eco-efficiency score. 

Data for R&D and IWS were unavailable for some years and prov
inces. For this reason, 304 observations were used for the regression 
analysis. 

2.2. Methods 

2.2.1. Data envelopment analysis 
The DEA model, initially proposed by Charnes et al. (1978), is a 

popular linear non-parametric mathematical programming approach 
used to determine the relative efficiency of homogeneous DMUs. It can 
range from a single-input/single-output technical efficiency measure to 
a multiple-input/multiple-output measure, and the weights for each 
DMU input and output are not affected by subjective factors. The most 
efficient DMUs constitute the efficient frontier, and the efficiency scores 
of the remaining DMUs represent their relative efficiency. 

With the increasing attention to environmental conservation, the 
development of technologies with smaller undesirable outputs (i.e., 
environmental burdens) has become a major concern in every area of 
production. A conventional DEA supposes that producing more outputs 
with fewer input resources is a criterion of efficiency. In the presence of 
undesirable outputs, however, technologies with more desirable (good) 
outputs and fewer undesirable (bad) outputs relative to a lower resource 

Table 1 
Coefficients for standard coal conversion and carbon emissions by energy type.  

Energy type Standard coal conversion 
coefficient (tons of standard 
coal/ton of energy) 

Carbon emission coefficient 
(tons of carbon/ton of 
standard coal) 

Coal  0.7143  0.7559 
Coke  0.9714  0.8550 
Crude oil  1.4286  0.5857 
Fuel oil  1.4286  0.6185 
Gasoline  1.4714  0.5538 
Kerosene  1.4714  0.5714 
Diesel  1.4571  0.5921 
Natural gas  1.33 × 10− 3  0.4483 
Liquefied 

petroleum 
gas  

1.7143  0.5042 

Sources: National Bureau of Statistics of China (2015) for standard coal con
version coefficients and Intergovernmetal Panel on Climate Change (2006) for 
carbon emission coefficients. 

2 Although labor with different education levels may affect industrial eco- 
efficiency differently, we used the total number of employees as an input in 
the DEA because data for the number of employees by education level were not 
available. However, given that similar variables have been used in the litera
ture, we believe that this did not degrade the analysis. 
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Table 2 
Input and output (desirable and undesirable) variables used in the DEA model and their data sources and descriptive statistics.  

Variable Unit Data source Mean Standard 
deviation 

Minimum Maximum 

Input 
Total energy consumption 10,000 tons of standard 

coal equivalent 
China Statistical Yearbook (CSY)  8,898.47  6,126.27 465.09 30,070.00 

Total assets of industrial 
enterprises 

10,000 yuan CSY  191,598,596.97  188,537,157.40 7,032,000 1,070,617,273 

Annual average number of 
employees 

Person CSY  293.95  319.56 10.30 1,568.00 

Industrial water supply and usage 100 million cubic meters China Statistical Yearbook on the 
Environment (CSYE)  

46.12  45.03 2.40 239.00  

Output (undesirable) 
Industrial waste gas emissions 100 million cubic meters CSYE  17,263.75  13,948.96 859.7 79,121.3 
Industrial wastewater 10,000 tons CSYE  82,173.26  74,284.33 5,782.20 34,1607.41 
Industrial solid waste disposed 

and kept in storage 
10,000 tons CSYE  3,150.01  4,228.81 10.18 28,237.15 

CO2 emissions Million tons of CO2 Own calculation  228.60  163.30 12.00 729.84  

Output (desirable) 
Industrial added value 100 million yuan CSY  6,387.05  6,006.95 176.92 30,259.49  

Fig. 1. Aggregated time-series trends for variables used in the DEA model for all examined provinces over the study period (2005 = 1): (a) input variables; (b) 
output variables. 
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input are deemed efficient. 
The four most commonly used methods for treating undesirable 

outputs in a DEA are (1) excluding them from the production function, 
(2) treating them as regular inputs, (3) treating them as normal outputs, 
and (4) performing the necessary transformations to take them into 
account (Halkos and Petrou, 2019). In this study, the third option was 
employed: the undesirable outputs were treated as normal outputs in a 
slack-based model (SBM). 

Suppose that there are n DMUs, each of which has three types of 
variables (inputs, desirable outputs, and undesirable outputs) repre
sented by vectors χ,γg,andγb, respectively. The matrices X, Yg, and Yb are 
defined as X = (χ1,⋯, χn) ∈ Rm×n, Yg =

(
γg

1,⋯, γg
n
)
∈ Rs1×n, and Yb =

(
γb

1,⋯, γb
n
)
∈ Rs2×n, where m is the number of inputs, s1 is the number of 

desirable outputs, and s2 is the number of undesirable outputs. It was 
assumed thatX > 0,Yg > 0,andYb > 0. 

The production possibility set (P) was defined as follows: 

P =
{(

χ, γg, γb)|χ ≥ Xλ,γg ≤ Ygλ, γb ≥ Ybλ, λ ≥ 0
}

(2)  

where λ ∈ Rn is the intensity vector. 
Note that this equation corresponds to constant returns to scale 

technology. 
A DMUo(χo, γ

g
o, γb

o) is efficient in the presence of undesirable outputs 
if there is no vector (χ, γg, γb) ∈ P, such that χ0 ≥ χ, γg

o ≤ γg, andγb
o ≥ γb,

with at least one strict inequality. According to this definition, the SBM 
was modified to develop an SBM with undesirable outputs as follows: 

MinP* =

1 −
1
m
∑m

i=1

s−i
χio

1 +
1

s1 + s2

(
∑s1

j=1

sg
j

γg
jo
+
∑s2

k=1

sb
k

γb
ko

)

subject to

χo = Xλ + s−

γg
o = Ygλ − sg

γb
o = Ybλ + sb

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

(3)  

where i is the index for inputs (1, 2 …, m), j is the index for desirable 
outputs (1, 2 …, s1), k is the index for undesirable outputs (1, 2 …, s2), s−
is the value of slack for the inputs, sg is the value of slack for the desirable 
outputs, and sb is the value of slack for the undesirable outputs. 

The vectors s− ∈ Rm and sb ∈ Rs2 correspond to excesses in inputs and 
undesirable outputs, respectively, while sg ∈ Rs1 expresses shortages in 
desirable outputs. P* reaches 1 only if slacks s− , sg, andsb are zero for all 
inputs, desirable outputs, and undesirable outputs. 

In DEA, when the number of DMUs is small, the number of units of 
the dominant or efficient set is relatively large, and the average effi
ciency is generally high (Alirezaee et al., 1998). Typically, a high pro
portion of DMUs is considered efficient when the number of DMUs (n) is 
smaller than the sum of the input (m) and output (s) variables (i.e., 

Table 3 
Possible determinants of industrial eco-efficiency and their data sources and descriptive statistics.  

Determinant Unit Data source Mean Standard deviation Minimum Maximum 

GRP yuan/person National Bureau of Statistics of China (2015)  34,941.98  21,574.07 5,052 107,960 
R&D 10,000 yuan China Statistical Yearbook on the Environment (CSYE)  1,971,832.00  3,029,478.00 38 16,500,000 
IWW 10,000 yuan National Bureau of Statistics of China (2015)  48,379.41  47,955.72 90 295,540 
IWG 10,000 yuan National Bureau of Statistics of China (2015)  104,547.60  127,534.10 140 1,281,351 
IWS 10,000 yuan National Bureau of Statistics of China (2015)  7,407.67  10,755.89 1 77,997 
PSO – National Bureau of Statistics of China (2015)  0.12  0.08 0.01 0.40 

GRP: gross regional product; R&D: research and development; IWW: investment in wastewater treatment; IWG: investment in waste gas treatment; IWS: investment in 
solid waste treatment; PSO: proportion of state-owned enterprises. 

Fig. 2. Aggregated time-series trends for variables (possible determinants) used in the regression model for all examined provinces over the study period (2005 = 1). 
GRP: gross regional product; R&D: research and development; IWW: investment in wastewater treatment; IWG: investment in waste gas treatment; IWS: investment in 
solid waste treatment; PSO: proportion of state-owned enterprises. 
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n <m + s), leading to low discrimination between homogeneous units 
(Matsuoka, 2009). Hence, it is better if n >m + s. A rule of thumb in a 
DEA model is that the number of DMUs should be greater than or equal 
to max{m × s, 3 × (m+s)} (Doyle and Green, 1994). This condition was 
satisfied in this study. 

2.2.2. Random-effects Tobit model 
To examine how possible determinants affected the industrial eco- 

efficiency of provinces, a random-effects Tobit model was used as the 
second-stage analysis. A two-stage approach combining DEA with a 
regression model was appealing due to its simplicity and the way in 
which it describes and interprets efficiency (McDonald, 2009). Since the 
efficiency scores are bounded, a variety of regression techniques have 
been used, including the classic ordinary least squares (OLS) and Tobit 
regression methods (Yahia and Essid, 2019). Since the value of the ef
ficiency scores obtained from DEA is limited to a range from 0 to 1, the 
DEA scores are censoring variables, and OLS yields biased estimates 
(Agasisti and Cordero-Ferrera, 2013). For this reason, a limited depen
dent variable model (Tobit model) was used to avoid this problem. Hoff 
(2007) noted that, in most cases, the Tobit regression model is sufficient 
for modeling DEA scores against exogenous variables. Hence, this study 
used a random-effects Tobit regression model to avoid the bias associ
ated with OLS. The Tobit model is explained as follows: 

yrt=βo+β1GRPrt+β2R&Drt+β3IWWrt+β4IWGrt+β5IWSrt+β6PSOrt+αr+urt
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yrt=0ify*
rt≤0

yrt=1ify*
rt≥1

yrt=y*
rt if 0<y*

rt<1

(4)  

where yrt is the eco-efficiency score evaluated by DEA, y*
rt is the unob

served latent variable, βo is the constant term, β1− 6 are the coefficients 
for the independent variables,αr is a specified individual random effect, 
urt is the error term, and t denotes the year. 

3. Results 

3.1. Industrial eco-efficiency 

First, we checked for possible endogeneity in the DEA (Cordero et al., 
2015; Santín and Sicilia, 2017). Spearman’s correlation coefficients 
between the efficiency scores calculated by the DEA and input variables 
were ≤ 0.30 (0.27 for total energy consumption, 0.30 for total assets of 
industrial enterprises, 0.28 for annual average number of employees, 
and 0.17 for industrial water supply and usage). Although the co
efficients were positive, they were at an acceptable level (Cordero et al., 
2015). 

Figure 3 shows a boxplot of each province’s industrial eco-efficiency, 
and Table 4 summarizes the eco-efficiency scores of the provinces from 
2005 to 2015. One point of interest is that the industrial eco-efficiency 
scores of some provinces tended to initially increase dramatically and 
then decline. For example, the scores for Hebei, Zhejiang, Fujian, 
Jiangxi, Henan, Hunan, and Guangxi provinces rose dramatically to 1 in 
2010 but suddenly dropped in the following year. Another point of in
terest is that although the overall trend of industrial eco-efficiency was 
upward, there were considerable regional disparities. With the excep
tion of some provinces, industrial eco-efficiency was generally low. In 
2015, Beijing, Tianjin, Inner Mongolia, Hunan, and Guangdong were the 
most eco-efficient provinces, with a score of 1; on the other end, Ningxia 
(0.251), Shanxi (0.253), Gansu (0.273), Xinjiang (0.309), and Qinghai 
(0.356) were the least eco-efficient provinces. 

Figure 4 shows the trend of industrial eco-efficiency in the northern 
provinces during the period 2005–2015. The northern region was 
selected as an example of the changing trends of industrial eco-efficiency 
because it includes provinces with both the best and close to the worst 
eco-efficiency performance. Beijing, Tianjin, and Inner Mongolia expe
rienced significant progress, while Hebei and Shanxi had relatively low 
eco-efficiency. 

3.2. Determinants of industrial eco-efficiency 

Using the DEA results as a dependent variable, a panel-data Tobit 
regression model was performed to explore the external factors that may 
influence industrial eco-efficiency in China. According to the Hausman 
test, a random-effects model was selected (χ2 = 0.99, p = 0.320). Table 5 

Fig. 3. Boxplot of each province’s industrial eco-efficiency scores over the study period. The whiskers represent maximum (top) and minimum (bottom), the lines of 
the boxes represent the third quartile, median, and first quartile (from top to bottom), the cross marks represent the mean, and the dots represent the outliers. 
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summarizes the results. 
With regard to economic variables, the effects of both GRP and R&D 

on the industrial eco-efficiency score were positive and statistically 
significant at the 1% and 5% levels, respectively. Regarding investment 
in pollution control, IWW was positive and statistically significant at the 
1% level, IWG was negative and statistically significant, and IWS was not 
statistically significant. Finally, PSO was negative and statistically sig
nificant at the 1% level. 

4. Discussion 

Among the 30 provinces examined, five (Beijing, Tianjin, Inner 
Mongolia, Hunan, and Guangdong) showed great progress in industrial 

eco-efficiency, with their scores improving by more than 0.5 from 2005 
to 2015. Other provinces, however, did not make equally significant 
progress. Three provinces (Shanxi, Heilongjiang, and Xinjiang) experi
enced a decline in industrial eco-efficiency, indicating that although 
some local governments have begun to seek a balance between envi
ronmental protection and economic growth, many provinces are still 
developing their economies at the cost of producing more undesirable 
outputs and consuming more inputs. It is also noteworthy that four of 
the five provinces with the worst industrial eco-efficiency in 2015 
(Ningxia, Gansu, Xinjiang, and Qinghai) are located in northwest China, 
which is characterized by an underdeveloped economy and fragile 
ecology. In the economically underdeveloped hinterland, insufficient 
funding and a lack of professional expertise hamper local government 

Table 4 
Industrial eco-efficiency scores of 30 Chinese provinces from 2005 to 2015.  
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efforts to enforce state-issued environmental regulations, and factory 
pollution regulations are not strictly observed (Global Environmental 
Forum, 2004). The results revealed that industrial development in 
northwest China is extremely deficient in terms of economic, energy, 
and environmental measures. 

The reason that many provinces have not made significant progress 
or have even experienced a decline in industrial eco-efficiency is pre
sumably a conflict of interest between the central and local govern
ments. In China, national environmental protection laws and regulations 
are formulated by the central government but are adapted to the actual 
situation of each region and implemented at the local level (Zheng et al., 
2015). This is because the central government represents the general 
interests of the whole country and the public, while local governments 
prioritize local economic interests. As a result, some provinces do not 
fully comply with environmental regulations. Furthermore, in 
economically developed provinces, local governments are increasingly 
unfriendly toward low-end, polluting industries, forcing highly 

polluting enterprises to close or move to other regions. Many provinces, 
especially in western China, remain economically and institutionally 
underdeveloped and have little choice but to welcome virtually all in
vestment projects, regardless of their quality, which to some extent 
hinders the improvement of industrial eco-efficiency. 

It is also noteworthy that most provinces in the western region made 
little progress in industrial eco-efficiency. This is probably the result of 
industrial transfer from the east to the west of the country. Although the 
Guiding Opinions of the State Council on Undertaking Industrial 
Transfer in the Central and Western Regions (State Council, 2010) 
required adherence to environmental protection regulations and strict 
control of access in the industrial transfer process, the momentum of 
pollution transfer was not fundamentally curbed. Jining (2016) found 
that China’s economic development is unbalanced. Some eastern re
gions have entered the later stages of industrialization, and their envi
ronmental quality has improved in recent years, whereas the central and 
western regions are still in need of economic development. The latter 
regions were thus willing to welcome the transfer of labor-intensive, 
high-consumption, high-emission industries from the east. 

An important finding from the comparison in the northern region 
(Fig. 4) was that Beijing achieved great progress during the study period. 
Its eco-efficiency score was only 0.287 in 2005, which was compara
tively low by national standards, but increased rapidly to reach a score 
of 1 in 2014. This result is consistent with Wu et al. (2018), who found 
that green development generally improved in Beijing from 2000 to 
2014, probably because it continued to improve its environmental 
protection policies and legislation, strictly supervising their imple
mentation, penalizing polluting businesses, and promoting cleaner 
production. The Beijing government even mandated the eviction of 
polluting industries. Beginning in 2006, many large-scale industrial 
enterprises, such as Beijing Coking and Chemical Plant, Beijing Capital 
Steel Group’s Shougang Shijingshan Plant, and Dongfang Chemical 
Plant, were closed or moved to other provinces (He et al., 2019). In 
2013, 288 polluting enterprises were closed, exceeding the annual goal 
of eliminating 200 polluting enterprises. These companies belonged to 
11 industry sectors, including building materials, chemicals, furniture 
production, casting, and forging (Beijing Municipal Ecology and Envi
ronment Bureau, 2013). Furthermore, the Beijing Clean Air Action Plan, 
issued in 2011 (People’s Government of Beijing Municipality, 2011), 
contributed to decreasing industrial gas emissions from 489.6 billion m3 

Fig. 4. Industrial eco-efficiency in northern China. The value 1 is the most efficient, while the value 0 is the least efficient.  

Table 5 
Random-effects Tobit model results.  

Determinant Coefficient Marginal effect 

GRP 4.74 × 10− 6 

(8.36 × 10− 6) 
** 3.81 × 10− 6 

(6.57 × 10− 7) 
** 

R&D 1.21 × 10− 8 

(4.78 × 10− 9) 
* 9.78 × 10− 9 

(3.87 × 10− 9) 
* 

IWW 1.09 × 10− 6 

(3.26 × 10− 7) 
** 8.78 × 10− 7 

(2.59 × 10− 7) 
** 

IWG − 2.79 × 10− 7 

(9.05 × 10− 8) 
** − 2.25 × 10− 7 

(7.30 × 10− 8) 
** 

IWS 8.31 × 10− 7 

(1.04 × 10− 6)  
6.69 × 10− 7 

(8.41 × 10− 7)  
PSO − 0.91 

(0.23) 
** − 0.73 

(0.19) 
** 

Constant 0.43 
(0.060) 

** –  

Notes: Standard errors in parentheses. ** statistical significance at the 1% level; 
* statistical significance at the 5% level. Observations = 304; log-likeli
hood = 57.50; Wald χ2 = 146.46. 
GRP: gross regional product; R&D: research and development; IWW: investment 
in wastewater treatment; IWG: investment in waste gas treatment; IWS: invest
ment in solid waste treatment; PSO: proportion of state-owned enterprises. 
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in 2011 to 367.6 billion m3 in 2015. Moreover, the Municipal People’s 
Congress voted to adopt regulations for the prevention and control of air 
pollution, which came into effect on March 1, 2014. Since then, the 
implementation of a catalog of prohibitions and restrictions for new 
industries has more effectively controlled industrial expansion that does 
not conform to the strategic positioning of the capital, guiding industries 
toward a low-carbon, green economy (Beijing Municipal Ecology and 
Environment Bureau, 2013). Furthermore, in the past 10 years, Beijing 
has increased its standard sewage charges tenfold. Similarly, a sewage 
charging policy was implemented step by step to encourage enterprises 
to progressively adopt advanced technology and to actively control 
pollution and reduce emissions (Don et al., 2015). Beijing’s experience 
and lessons in the implementation of environmental control policies 
could be a model for many Chinese provinces. 

Tianjin had the highest average industrial eco-efficiency score 
(0.811) during the study period, not only in the northern region but also 
in the entire country. As shown in Fig. 4, the province increased its eco- 
efficiency score throughout the period, except in 2009, and achieved a 
score of 1 in 2010. This may be explained by Tianjin’s implementation of 
policies to optimize its industrial structure, develop a green economy, 
strictly control pollution caused by coal combustion, establish strict 
environmental access mechanisms, and eliminate underdeveloped pro
duction facilities. For instance, during the 11th Five-Year Plan period 
(2006–2010), Tianjin strengthened its energy conservation by focusing 
on energy utilization efficiency and the development of renewable en
ergy projects, such as wind, solar, and biomass power generation 
(Tianjin Ecology and Environment Bureau, 2012). As a result, in 2010, 
its energy consumption relative to the GDP dropped to 0.826 tons of 
standard coal equivalent per yuan—21% lower than the 2005 level and 
above the energy-saving target of a 20% reduction during the 11th Five- 
Year Plan period (Tianjin Ecology and Environment Bureau, 2012). 
Simultaneously, the quality and efficiency of industrial enterprises 
significantly improved. In recent years, Tianjin has accelerated the 
elimination of underdeveloped production facilities and overcapacity, 
encouraged energy-saving transformations of excessively energy- 
consuming enterprises, and continuously improved energy utilization 
methods in key areas. 

Significant progress in industrial eco-efficiency has also been made 
in Inner Mongolia, one of China’s most important energy production 
bases, which experienced remarkable socioeconomic and environmental 
changes during the study period. The area’s industrial eco-efficiency 
score increased from 0.318 in 2005 to 1 in 2009, which was an 
achievement of great significance for the development of sustainable 
industry. In the past, Inner Mongolia had a relatively underdeveloped 
economy, which developed by wasting resources and damaging the 
environment (Yang et al., 2012). Since the implementation of the 
Western Development Strategy in 1999, Inner Mongolia has attracted 
substantial investment and adopted preferential policies from the na
tional government. Its per capita income grew from 5,861 yuan in 1999 
to 71,101 yuan in 2015 (National Bureau of Statistics of China, 2015). 
This economic growth provided strong support for ecological develop
ment, and the level of green development has steadily improved. During 
the 11th and 12th Five-Year Plans (2006–2010 and 2011–2015), energy 
consumption per unit of industrial added value decreased by 42.9% and 
31.9%, respectively. The province’s eco-industrial achievements can 
serve as an example for other regions in China. 

Unlike Beijing, Tianjin, and Inner Mongolia, other provinces are still 
characterized by low eco-efficiency. For example, Hebei had a relatively 
low industrial eco-efficiency score (0.477) in 2015. The province has 
long been known for the consumption of natural resources, backward
ness of its environmental infrastructure, and illegal gas emissions from 
its small enterprises (Li et al., 2020). Pollution fog and haze appear 
frequently and cause serious damage, threatening people’s health and 
daily living conditions. In 2013, 7 of the 10 most polluted cities in China 
were located in Hebei (Wang et al., 2013). The province’s industrial eco- 
efficiency score was higher than that of Beijing in 2005 but did not 

improve. There are several possible reasons for Hebei’s relatively low 
industrial eco-efficiency score. First, its main industries are iron, steel, 
coke, and cement, which place a high environmental burden. This high 
proportion of heavy industry has led to an enormous demand for energy 
and created a large volume of pollutant emissions (Wang et al., 2013). 
Second, the province’s environmental infrastructure is underdeveloped, 
and many small enterprises produce illegal emissions (Li et al., 2020). 
Hebei had an eco-efficiency score of 1 in 2010, which dramatically 
declined in subsequent years, suggesting that its low industrial eco- 
efficiency was not due to technological limitations but mainly due to 
insufficient regulation and enforcement. 

Finally, Shanxi saw no improvement in industrial eco-efficiency 
during the study period. Its score slightly increased between 2005 and 
2011 but decreased in the following years. Shanxi is one of the leading 
energy production and consumption regions of China, with its total 
energy consumption increasing from 45.55 million tons of standard coal 
in 2000 to 128.23 million tons in 2015 (Zhang et al., 2019b). This seems 
to be one of the reasons for its low industrial eco-efficiency, as fossil fuel 
consumption is the primary source of regional air pollution and CO2 
emissions. Furthermore, extensive exploitation of fossil fuels results in 
environmental deterioration and the discharge of large amounts of 
wastewater, waste gas, and solid waste. Hence, a resource-dependent 
region like Shanxi should further improve the natural resource and en
ergy efficiency of its industries by adopting advanced resource-efficient 
technologies and developing less resource- and energy-intensive 
industries. 

The results also indicate wide gaps in industrial eco-efficiency be
tween provinces, even within the same region. Many provinces have 
considerable potential to improve their industrial eco-efficiency. 
Crucially, it is necessary for the central government to address this un
balanced eco-efficiency development of regional industries. 

A comparison of our results with those of similar studies reveals both 
similarities and differences. For example, Huang et al. (2018), who 
evaluated provincial eco-efficiency in China using five inputs, one 
desirable output, and one undesirable output, reported similar ten
dencies in the average scores for Tianjin (first in both studies), Guizhou 
(29th in both studies), and Guangdong (fourth in this study and second 
in Huang et al., 2018) and different tendencies for Qinghai (26th and 
3rd, respectively), Inner Mongolia (2nd and 24th, respectively), and 
Hainan (25th and 4th, respectively). The main reason for these in
consistencies is probably the selection of variables (both inputs and 
outputs). Compared with Huang et al. (2018), as well as Dai et al. 
(2016), this study included more diversified variables, especially envi
ronmental aspects, which allowed a more comprehensive evaluation of 
eco-efficiency. However, further studies are needed to scrutinize the 
selection of variables for accurate assessments of industrial eco- 
efficiency. 

The random-effects Tobit regression results showed that, in line with 
expectations, per capita GRP was positively and significantly associated 
with industrial eco-efficiency. Along with economic development, 
public displeasure with environmental degradation has grown (Shi 
et al., 2020), and the government has been under pressure to satisfy the 
increasing demands for environmental protection. The growing envi
ronmental concerns have led to more stringent environmental regula
tions, the introduction of cleaner technologies, the replacement of 
obsolete and polluting technologies, and increased environmental in
vestment (Sinha et al., 2017). 

Similarly, in line with our assumptions (see Section 2.1.2), the in
ternal R&D expenditure of industrial enterprises had a positive and 
statistically significant effect on eco-efficiency. Previous studies have 
demonstrated that technological innovation provides an avenue for 
environmental improvement (Zhou and Zhao, 2016) and that R&D in
vestment plays an important role in increasing industrial eco-efficiency 
(Hobday et al., 2004). Therefore, local governments should introduce 
measures to encourage enterprise R&D investment. 

Investment in wastewater treatment also had a positive and 
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statistically significant impact on industrial eco-efficiency. This is in line 
with the expectation that investment in pollution control technologies 
reduces pollutant emissions, thereby improving industrial eco- 
efficiency. A rather contradictory result was the negative and statisti
cally significant impact of investment in waste gas treatment, perhaps 
due to China’s weak judicial system, extensive corruption, and opaque 
investment processes (Zhang et al., 2019a). 

Finally, the proportion of state-owned enterprises had a negative and 
statistically significant effect on industrial eco-efficiency. This can be 
explained by the fact that state-owned enterprises are characterized by a 
heavy pollution burden, low competition, excessive staff numbers, and 
poor corporate governance (Lin et al., 2020; Zhong, 2006). In China, 
state-owned enterprises always enjoy more preferential policies and 
perform worse than other types of enterprises. Contrary to state-owned 
enterprises, due to intense market competition, private enterprises are 
forced to invest in innovation to maintain a competitive advantage (Liu 
et al., 2020; Zhang et al., 2001). Wu (2017) noted that private enter
prises have greater innovative impetus and capabilities than state- 
owned enterprises, and Konisky and Teodoro (2016) found that pri
vate enterprises face higher environmental pressure than state-owned 
enterprises because they enjoy less protection from the government 
and are more likely to be penalized for environmental violations. In 
China, the government controls the bulk of the country’s natural re
sources, most of which are allocated to state-owned enterprises (Zhong, 
2006). This uneven allocation of resources lowers the resource usage 
efficiency of state-owned enterprises. To further improve industrial eco- 
efficiency, it is essential to minimize governmental market intervention 
and create a competitive market environment. Furthermore, laws and 
regulations should not unduly discriminate between state-owned and 
private enterprises, and privatization can increase competition and ef
ficiency (Zhong, 2006). 

5. Conclusion and policy implications 

Based on panel data for 30 Chinese provinces from 2005 to 2015, this 
study adopted a two-stage approach, first using a DEA (SBM) model to 
determine the provincial industrial eco-efficiency scores and then per
forming a random-effects Tobit regression analysis to explore the de
terminants of industrial eco-efficiency. The first-stage results revealed 
that the overall trend of industrial eco-efficiency was upward. However, 
with the exception of Beijing, Tianjin, Inner Mongolia, Hunan, and 
Guangdong, most provinces were still characterized by low industrial 
eco-efficiency. The second-stage results indicated that per capita GRP, 
the internal R&D expenditure of industrial enterprises, and investment 
in wastewater treatment had positive and statistically significant im
pacts on provincial industrial eco-efficiency. By contrast, the proportion 
of state-owned enterprises and investment in waste gas treatment had 
negative impacts. In conclusion, there are great disparities in industrial 
eco-efficiency between Chinese provinces. Provinces with high indus
trial eco-efficiency are mainly distributed across the eastern region, 
while those with low industrial eco-efficiency are located in the often 
economically less developed western region. The findings of this study 
have significant policy implications for improving provincial industrial 
eco-efficiency. The following recommendations aim to help provinces 
with low industrial eco-efficiency to pursue high-quality, green 
development.  

1. Local governments should encourage enterprises to increase their 
R&D investment. The regression analysis revealed that R&D invest
ment positively affects industrial eco-efficiency. A previous study 
indicated that government subsidies facilitate enterprises’ R&D in
vestment for developing environmental protection technologies 
(Wu, 2017). Hence, local governments should provide subsidies to 
enterprises (particularly private enterprises) that have strong inno
vative impetus but insufficient resources for innovation (Shi et al., 
2020). 

2. It is important to construct a responsibility matrix for China’s gov
ernment officials regarding environmental damage. Officials’ per
formance should be judged according to various environment- 
related indicators, including resource utilization, environmental 
quality, and ecological protection. This empirical study showed that 
although some provinces have made great progress in economic 
development, resource consumption and pollutant emissions remain 
at high levels. This can be explained by the fact that some local 
governments pay little attention to environmental protection 
because the evaluation processes for officials are closely linked to 
economic achievement and not to environmental performance (Liu, 
2017). It is therefore vital that resource and environmental issues 
should be highlighted in the performance evaluation of officials.  

3. Although national anti-pollution regulations apply everywhere in 
China, regional discrepancies exist in practice. The main reason for 
this is a lack of expertise (Global Environmental Forum, 2004). It is 
thus crucial to make technical education available on a wider scale 
and train more technicians and engineers. At the same time, the 
Chinese government should take measures to foster technology 
transfer between provinces to facilitate the flow of knowledge and 
ideas that contribute to industrial eco-efficiency development. China 
is at a critical stage of economic restructuring and industrial 
upgrading. Under the double pressure of environmental pollution 
and resource scarcity, the government should make substantial ef
forts to develop science parks and encourage innovation and tech
nology transfer. 
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