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China's energy use has increased significantly in recent years with the country's rapid economic growth and
large-scale urbanization. Therefore, air pollution has become a major issue. In this study, we conducted spatial
autocorrelation and spatial panel regression analyses of sulfur dioxide (SO2) and nitrogen oxide (NOX) emissions
using the panel data of 31 provincial-level administrative units in China during the period 2011–2017 to compre-
hensively understand the factors affecting air pollutant emissions. This study contributes to the literature by con-
sidering comprehensive factors and spatial effects in the panel-data econometric framework of the whole
country of China. The analysis of spatial characteristics shows that during the study period, pollutant emissions
in China declined, although emissions in northern regions were still relatively high. Furthermore, SO2 and NOX

emissions showed significant positive spatial autocorrelations. The results of a fixed-effect spatial lag model
showed that both socioeconomic and natural factors were statistically significant for air pollutant emissions, al-
though the degree differed by the type of pollutant. The population, the urbanization rate, the share of added
value of secondary industry, and heating and cooling degree days positively affected emissions, while population
density, per-capita gross regional product, precipitation, and relative humidity negatively affected emissions.
Based on these results, we have put forward suggestions to address the issue of air pollution and achieve environ-
mental sustainability, such as the promotion of regional cooperation and a transition of the economic structure.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

China's energy use has significantly increased over the past few de-
cades with the country's rapid economic growth and large-scale
es and Environmental Sciences,
521, Japan.
tsumoto).
urbanization. This has led to a corresponding increase in air pollutant
emissions. Persistent large-scale air pollution has not only hindered
China's economic development but has also adversely affected people's
health and quality of life (Li and Zhang, 2014). The effective control of
air pollution and the consequent improvement of urban ambient air
quality have proven to be one of the most important goals for social
and economic transformation and development in China (Wang et al.,
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2014). Although the Chinese government has been working to alleviate
this problem, air pollution has long been a known and pressing problem
in the country. In its Twelfth Five-Year Plan (2011–2015), a strategy to
control emissions of nitrogen oxides (NOX), sulfur dioxide (SO2), and
major particulate matter (PM) was implemented nationwide (Ding
et al., 2017). This strategy has been amended many times, but the situ-
ation has not significantly improved. Indeed, in 2017, only 99 of 338
(29.3%) prefecture-level cities nationwide met national ambient air-
quality standards (Chinese Ministry of Ecology and Environmental
Protection, 2017).

The factors influencing air pollution are extensive and complex, and
many studies have been implemented to explore the causes of changes
in air pollutant emissions and concentrations (e.g., SO2, NOX, and PM)
and in the air quality index (AQI). Table 1 summarizes the literature
on the potential factors (socioeconomic andnatural) influencing air pol-
lution in China. Different studies have focused on different factors.

Regarding socioeconomic factors, population (e.g.,Wang et al., 2016;
S. Zhao et al., 2018), population density (e.g., Hao and Liu, 2016; Huang,
2018; Zhao et al., 2019), economic conditions (e.g., Hao and Liu, 2016;
Wang et al., 2016), secondary industry activity (e.g., Huang, 2018;
Zeng et al., 2019; Han et al., 2019), and urbanization (e.g., Han et al.,
2014; Liu et al., 2017; Hao et al., 2020) are often considered the impor-
tant determinants of air pollution.1 The two population-related factors
affect air pollution differently. Population is basically a factor that accel-
erates air pollution. Using a semi-parametric panel model with
provincial-level data, Wang et al. (2016) found that population was a
factor that increases SO2 emissions. Zhao et al. (2019) used regression
models with the data for 269 Chinese cities to evaluate the relationship
between PM2.5 concentrations and socioeconomic factors from 2015 to
2016 and found that population positively affected the PM2.5 concentra-
tions due to the acceleration of urbanization. S. Zhao et al. (2018) ap-
plied structural equation modeling with the data of 200 Chinese cities
in 2015 to analyze the driving forces of NOX pollution and found that
the resident population indirectly and positively affected NOX pollution.

In contrast to population, the impact of population density on air
pollution is somewhat complicated. On one hand, a higher population
density leads to a higher degree of urbanization and industrialization,
which may increase urban PM2.5 concentrations (Hao and Liu, 2016).
On the other hand, a high population density enables the intensive
use of energy, which reduces total pollutant emissions and is therefore
beneficial to the environment (Hao and Liu, 2016). Huang (2018) also
pointed out that a high population density can degrade the air quality
due to a crowd effect or improve the air quality due to a civilization ef-
fect. In analyzing the relationship between SO2 emissions and socioeco-
nomic factors using panel spatial Durbin models in 30 provinces in
China, Huang (2018) showed that population density could reduce
SO2 emissions because the civilization effect was greater than the
crowd effect. However, Zhao et al. (2019) concluded that population
density would increase the PM2.5 concentration level.

Various economic factors have also been evaluated in the literature,
and their impacts on air pollution also varied. Per-capita gross domestic
product (GDP) or per-capita gross regional product (GRP), which indi-
cate the wealth of countries or regions, are variables often investigated
in the literature. Yang et al. (2017b) employed various panel-data re-
gressionmodels in 30 cities in China and found that per-capita GDP neg-
atively affected SO2 concentrations. However, a global analysis with
country-level data and spatial panel econometric models by Fu and Li
(2020) revealed that per-capita GDPwas a positive factor for PM2.5 con-
centrations. Other studies had mixed findings. For example, Wang et al.
(2016) found an invertedU-shaped relationship between SO2 emissions
and per capita GDP. Hao and Liu (2016) evaluated the socioeconomic
factors affecting PM2.5 concentrations and the AQI for 73 Chinese cities
in 2013 using spatial econometric models and found a similar
1 There are other socioeconomic factors that can affect air pollution, as shown inTable 1.
However, the literature review here focused on the factors evaluated in this study.
relationship. These studies indicate that air pollution can be worse dur-
ing the initial stage of economic growth and can be improved after eco-
nomic levels have reached a certain point.

Another important economic variable is the activity of secondary in-
dustry (e.g., the value added or GDP of secondary industry, or the ratio
of the value added of secondary industry to GDP), which is the main
emitter of air pollutants. Zeng et al. (2019) employed spatial economet-
ric models with China's 31 provincial-level administrative units to em-
pirically estimate the effects of energy policies and socioeconomic
variables on PM10, PM2.5, and SO2 emissions. The results indicated that
the GDP of secondary industry positively affected PM10 and SO2 emis-
sions. Huang (2018) also found that provinces with higher proportions
of secondary industries to total GRP emitted more SO2. This finding can
be explained by the fact that the development of secondary industry
stimulates energy use and greatly increases air pollution (Jiao et al.,
2017).

Finally, urbanization is another important factor affecting air pollu-
tion. Liu et al. (2017) used various spatial econometric models and the
data of 289 prefecture-level cities in 2014, and found that urbanization
positively affects AQI. Hao et al. (2020) used a dynamic threshold panel
model with the data for 29 provinces for the period 1998–2015 and
found that per-capita pollutant emissions increased with increasing ur-
banization. As these studies have revealed, urbanization usually posi-
tively affects air pollution because it causes an increase in energy
consumption, crowding, traffic congestion, and vehicle emissions (Liu
et al., 2017; Wu et al., 2019).

Although these studies help us understand the causes of air pollution
from socioeconomic perspectives, natural factors (meteorological varia-
tions and conditions), such as temperature (e.g., Yang et al., 2017a; Feng
et al., 2019), precipitation (e.g., Li et al., 2014; Bai et al., 2019; Liu et al.,
2019), and humidity (e.g., Li et al., 2014; Chen et al., 2016; Bai et al.,
2019), are also important factors that affect air pollution.2 Yang et al.
(2017a) used a series of regressionmodels and data from113major cit-
ies in China in 2014 to evaluate the impact of natural factors on SO2 con-
centrations. They found that temperature had a positive effect on SO2

concentrations and precipitation had a negative effect. Feng et al.
(2019) examined global datasets and found that PM2.5 concentrations
were positively correlated with temperature but negatively correlated
with precipitation. Li et al. (2014) evaluated the relationship between
air quality and various meteorological factors using correlation analysis
and data for the period 2001–2011 in Guangzhou, and found that pre-
cipitation and relative humidity were negatively correlated with air
quality. These findings were confirmed by Chen et al. (2016), who eval-
uated the factors affecting PM2.5 concentrations in the Chinese city of
Nanjing from 2013 to 2015. Precipitation contributes to the diffusion
of atmospheric pollutants, and relative humidity increases the size and
volume of the pollutant particles, thus lowering pollution levels (Li
et al., 2014; Lu et al., 2017; Bai et al., 2019).

Many studies have mainly focused on either socioeconomic or natu-
ral factors, but a few have considered both socioeconomic and natural
factors in their analyses (Table 1), although it is important to include
all possible influencing factors (i.e., socioeconomic and natural factors
here) in regression models to remove the possible omitted variable
bias. Liu et al. (2017) found that factors such as urbanization, industrial-
ization, urban population aggregation, and temperature had a signifi-
cantly positive impact on the AQI, while all the natural factors besides
temperature had a negative impact. Han et al. (2019) studied the factors
affecting the AQI in China using the data of 152 cities using global and
local regression models. They found that the increase in the industrial
structures and the number of civilian vehicles led to an increase in the
AQI, but the impact of precipitation was reversed.

The purpose of this study is to explore the spatial effects and factors
affecting air pollution using provincial-level data in China for the period
2 There are other natural factors that can affect air pollution as shown in Table 1. How-
ever, the literature review here focused on the factors evaluated in this study.



Table 1
Summary of the selected literature analyzing the factors influencing air pollution in China using regression models.

Factors Source Region Period Main method Variables

Socioeconomic
factors

Hao and
Liu
(2016)

73 cities 2013 Spatial lag model (SLM), spatial error
model (SEM)

Dependent variables: Air Quality Index (AQI) and PM2.5

concentrations
Independent variables: per-capita gross domestic
product (GDP), industrial structure, vehicle population,
population density

Wang
et al.
(2016)

Provinces (the number is not
specified)

1990–2012 Parametric and semi-parametric panel
fixed-effect models

Dependent variable: SO2 emissions
Independent variables: population, energy use,
per-capita GDP, percentage of urban population

Huang
(2018)

30 provinces 2008–2013 Panel spatial Durbin model Dependent variable: SO2 emissions
Independent variables: provincial spending on
environmental protection, gross regional product (GRP),
foreign direct investment, population density, share of
trade to GRP, heat supply, private investment of
pollution treatment, share of product of secondary
industry to GRP

D. Zhao
et al.
(2018)

Five hot spots (Yangtze River
Delta, Bohai Rim, Pan–Pearl
River Delta, Central region,
Western region)

2004–2012 Stochastic impacts by regression on
population, affluence, and technology
model (panel regression model)

Dependent variable: PM2.5 pollution intensity
Independent variables: population density, per-capita
GDP, per-capita energy consumption, private cars

S. Zhao
et al.
(2018)

85 cities (1996) and 200 cities
(2015)

1996, 2015 Structural equation modeling Dependent variables: SO2 and NOX concentrations
Independent variables: household electricity
consumption, civilian vehicles, urban built-up area,
resident population, secondary industry GDP, tertiary
industry GDP, power generation, urban heated area

Zhou
et al.
(2018)

190 cities 2014 Ordinary least squares (OLS) regression,
SEM

Dependent variables: PM2.5 concentrations
Independent variables: Per capita GDP, population
density, urban secondary industry share, industrial soot
emissions, road density, ratio of foreign direct
investment to GDP, electricity consumption

Zeng
et al.
(2019)

27 provinces and four
direct-controlled municipalities

2003–2016 OLS regression, spatial autoregressive
model, SEM

Dependent variables: PM10, PM2.5, and SO2 emissions
Independent variables: emission reduction policies,
renewable energy policies, GDP of secondary industry,
consumption expenditure, educational level, population
density, private vehicle discharge level, waste gas
emissions, industry pollution source treatment,
investment in anti-pollution projects

Zhao
et al.
(2019)

269 cities 2015–2016 OLS regression Dependent variable: PM2.5 concentration
Independent variables: population, built-up areas, GDP,
population density, share of secondary industry, private
vehicles, per-capita disposable income

Hao
et al.
(2020)

29 provinces 1998–2015 Dynamic threshold panel model
incorporating generalized method of
moments

Dependent variable: per-capita SO2, industrial soot, and
industrial waste gas emissions
Independent variables: urbanization, per-capita GDP,
ratio of secondary industry to GDP, ratio of tertiary
industry to GDP, ratio of trade to GDP, per-capita
education years, energy intensity

Natural factors Yang
et al.
(2017a)

113 cities 2014 OLS, SLM, and SEM, geographic weighted
regression model

Dependent variable: SO2 concentration
Independent variables: precipitation, temperature, wind
speed, relative humidity

Socioeconomic
and natural
factors

Liu
et al.
(2017)

289 prefecture-level cities 2014 SLM, SEM, Spatial Durbin model Dependent variable: AQI
Socioeconomic variables: total population, urban
population, GDP, urban land, share of value added of
secondary industry, population density, per-capita GDP,
private car density
Natural variables: temperature, precipitation,
normalized difference vegetation index, atmospheric
pressure, relative humidity, wind speed, elevation,
green ratio

Yang
et al.
(2017b)

30 cities 1995–2016 Pooled regression models, variable
intercepts and constant coefficients
models, variable intercepts and variable
coefficients models

Dependent variable: SO2 concentration
Socioeconomic variables: population density, per-capita
GDP, secondary industry share
Natural variables: precipitation, temperature, wind
speed, relative humidity

Hu
et al.
(2019)

29 provinces 2002–2014 Stochastic frontier analysis, error
correction model

Dependent variable: SO2 emissions
Socioeconomic variables: price index, GDP, population,
household size, vehicles, share of industry and service
sectors,
Natural variable: heating and cooling degree days

Han
et al.
(2019)

152 cities 2016 Global and local regression model Dependent variable: AQI
Socioeconomic variables: secondary industry GDP,
industrial structure, population density, per-capita GDP,
urbanization rate, civil vehicles, traffic mileage
Natural variables: temperature, precipitation,
atmospheric pressure, wind speed, elevation, green
ratio
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5 The data are available at http://data.stats.gov.cn/easyquery.htm?cn=E0103.
6 The data are available at http://www.meteomanz.com/.
7 The data are available at http://www.stats.gov.cn/tjsj/ndsj/.
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2011–2017. The study focuses on SO2 and NOX emissions as the target
air pollutants because they are primary sources of air pollution. Al-
though China significantly reduced SO2 emissions between 2007 and
2016 (from36.6Mt. to 8.4Mt.), it is still theworld's second largest emit-
ter (Hu et al., 2019), with over 70% of SO2 emissions derived from indus-
trial sources (Zhang and Crooks, 2012). Furthermore, China produces
about 25% of the world's NOX emissions (Cui et al., 2013), mainly from
the burning of fossil fuels and the production of explosives, dyes, nitric
acid, and nitrogenous fertilizer (Lee et al., 1997; Cui et al., 2013). There-
fore, SO2 and NOX emissions are still the main causes of air pollution in
China. Few studies have been conducted on the emission of various pol-
lutants, and further research will improve our understanding of the ef-
fectiveness of air pollution mitigation efforts and strategies. In regard
to the researchmodel, we employed spatial econometricmodels, in par-
ticular fixed-effect spatial panel regression models. Spatial econometric
models are suitable for this study considering that regional air pollutant
discharge has the characteristics of spatial spillover and spatial diffusion
(i.e., flows from one province to the adjacent provinces). Furthermore,
panel data regression models can increase the number of observations,
and the province fixed effect can capture unobserved factors in a prov-
ince, whereas the year fixed effect can capture the factors that affect pol-
lutant emissions equally across a province in each year. Recent studies
by Liu et al. (2017) and Yang et al. (2017b) have evaluated both socio-
economic and natural aspects that affect air pollution, similar to this
study. However, Liu et al. (2017) only used single-year data, which is
weak for evaluating causality, while Yang et al. (2017b) did not consider
spatial effects. In addition, these studies focused on limited geographical
areas. The city-level analysis is more detailed in terms of geographical
resolution, but given China's vast area and socioeconomic diversity,
studies of specific areas lack the necessary generalizability for an overall
assessment of China. Therefore, our approach ismore appropriate to ex-
plore the various factors affecting air pollution. Considering our litera-
ture review, the main contributions of this study are that we consider
(1) comprehensive factors (i.e., multiple socioeconomic and natural fac-
tors) andmultiple air pollutants, (2) thewhole countrywith itsmultiple
regions, (3) spatial effects, and (4) panel data for a relatively long
period.

2. Data and methodology

This section describes the variables, data, and models used to ana-
lyze the factors affecting air pollutant emissions.

2.1. Variable selection and data

In this study, we used SO2 and NOX emissions as the dependent var-
iables. From the literature review in Section 1, it is clear that not only so-
cioeconomic but also natural factors can affect air pollution. Considering
the literature review and the data availability, we chose eight factors
(i.e., five socioeconomic factors—population (POP), population density
(PD), urbanization (URB), per-capita GRP (PCGRP), and added value of
secondary industry divided by GRP (SDA_GRP)—and three natural fac-
tors—degree days (DD), precipitation (PRE), and relative humidity
(RHU)3) to examine. Definitions and descriptive statistics are provided
in Table 2.

For the temperature-related variable, this study used degree days,
the sum of heating degree days (HDD) and cooling degree days (CDD),
which were calculated based on daily temperature.4 In the literature,
temperature is often used as an independent variable. However, it is
3 The natural factors are not constant and vary every year, and the degree of change dif-
fers by province. Therefore, fixed effects cannot capture the effect of the natural factors.
Consequently, it is reasonable to include them as independent variables.

4 Heating degree days refers to the cumulative daily temperatures below a base temper-
ature in a year, and cooling degree days refers to the cumulative daily average tempera-
tures above a base temperature. Because HDD and CDD are both temperature-related
variables and are highly correlated, we applied DD not HDD and CDD in our analyses.
not possible to capture coldwinter and hot summer, whenmore energy
is consumed, with a linear modeling framework if temperature is used.
Therefore, we used degree days. The base temperatures used for HDD
andCDDwere 18 °C and26 °C, respectively (Shi et al., 2016). Eqs. (1) and
(2) are used to calculate the degree days where D is the number of days
in the year, Td is the daily mean temperature for day d, and rd is equal to
1 if Td is lower than 18 (Eq. (1)) or higher than 26 (Eq. (2)) and is equal
to 0 otherwise.

HDD ¼
XD
d¼1

rd 18−Tdð Þ ð1Þ

CDD ¼
XD
d¼1

rd Td−26ð Þ ð2Þ

Considering availability and comprehensiveness, the annual data of
the 31 provincial-level administrative units (hereafter, provinces) dur-
ing the period 2011–2017 were employed (the total observation was
217). The data for SO2 and NOX emissions and socioeconomic factors
were taken from theNational Bureau of Statistics for each province.5 De-
gree days were calculated based on daily temperatures taken from
Meteomanz.com,6 and the annual average precipitation and relative hu-
miditywere taken from the China Statistical Yearbook.7 The data from a
major city of each province8were used as representativeswith regard to
the natural factors.

2.2. Empirical framework

In this study, a spatial autocorrelation analysis using Moran's I and
scatter plots was performed first, followed by spatial econometric esti-
mations. To choose suitablemodels,we conducted theHausmanand La-
grange multiplier (LM) tests.

2.2.1. Spatial autocorrelation analysis
Spatial dependence is a geographical phenomenon. Regional air pol-

lutant discharge has the characteristics of spatial spillover and spatial
diffusion, with a great impact on the air pollution of neighboring
areas. Here, themost commonly usedMoran's Iwas selected tomeasure
the spatial correlation of SO2 and NOX. The Moran's I is defined as
Eq. (3), where N is the number of spatial units indexed by locations
(provinces in this study) i and j, Wij is a spatial weight matrix with
zeroes on the diagonal, xi and xj refer to the observations of i and j, re-
spectively, and x refers to the mean of x.

I ¼ ∑N
i¼1∑

N
j≠iWij xi−xð Þ xj−x

� �
S2
XN

i¼1

XN

j¼1
Wij

� � ¼

X
i¼1

NXN
j≠i

Wij xi−xð Þ xj−x
� �

X
i¼1

NX
j≠i

N

Wij

 !X
i¼1

N

xi−xð Þ2
ð3Þ

A spatial weight matrix is necessary when implementing spatial
econometric analysis, as it provides spatial-structure information be-
tween adjacent areas and how they interact with each other. The choice
of the spatial weight matrix is the premise for the analysis. There are
two types of spatial weight matrices, which are based on either
8 The selected major cities are: Hefei (Anhui), Beijing, Chongqing, Fuzhou (Fujian),
Yuzhong (Gansu), Guangzhou (Guangdong), Nanning (Guangxi), Guiyang (Guizhou),
Haikou (Hainan), Shijiazhuang (Hebei), Harbin (Heilongjiang), Zhengzhou (Henan), Wu-
han (Hubei), Changsha (Hunan), Nanjing (Jiangsu), Nanchang (Jiangxi), Changchun (Ji-
lin), Shenyang (Liaoning), Hohhot (Inner Mongolia), Yinchuan (Ningxia), Xining
(Qinghai), Jinghe (Shaanxi), Jinan (Shandong), Baoshan (Shanghai), Taiyuan (Shanxi),
Wenjiang (Sichuan), Tianjin, Urumqi (Xinjiang), Lhasa (Xizang), Kunming (Yunnan),
and Hangzhou (Zhejiang).

http://Meteomanz.com
http://data.stats.gov.cn/easyquery.htm?cn=E0103
http://www.meteomanz.com/
http://www.stats.gov.cn/tjsj/ndsj/


Table 2
Definitions and descriptive statistics of variables.

Factors Variables Definition Mean S.D. Min. Max.

Air pollution SO2 Annual SO2 emissions (ton) 561,809.18 398,404.16 3462.81 1,827,397.20
NOX Annual NOX emissions (ton) 624,496.03 424,650.87 30,153.52 1,801,138.33

Socioeconomic
factors

POP Population at the end of the year (104 person) 4398.61 2769.82 303.00 11,169.00
PD Population density (person/km2) 2796.94 1164.11 515.00 5821.00
URB Urbanization rate (%) 55.58 13.38 22.73 89.61
PCGRP Per-capita GRP (Yuan/person) 50,049.28 23,388.45 16,436.55 129,041.64
SDA_GRP Ratio of added value of secondary industry to GRP 0.45 0.08 0.19 0.59

Natural factors DD Sum of heating degree days and cooling degree days in a major city of each province
(°C-day)

2393.17 1223.03 557.30 5477.10

PRE Annual precipitation of a major city in each province (mm) 942.51 565.85 148.80 2939.70
RHU Annual average relative humidity of a major city in each province (%) 65.30 11.94 33.50 84.58

9 The data are available at http://www.stats.gov.cn/tjsj/ndsj/.
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contiguity or distance. Here, the widely used contiguity spatial weight
matrix has been adopted. The spatial weight matrix is defined as W,
with elements Wij indicating whether or not observations i and j are
spatially close. If units i and j (≠ i) are neighbors, the spatial weight is
1; otherwise, it is 0.Wij can be written as Eq. (4).

Wij ¼
1 if i is contiguous to j

0 otherwise

8<
: ð4Þ

The value of Moran's I ranges from−1 to 1. When the value is close
to−1, the spatial distribution shows a discrete trend. In contrast, when
the value is close to 1, a clustering trend appears in the spatial distribu-
tion. If the value is close to 0, there is no correlation. The results of
Moran's I are not only displayed numerically but also shown through
theMoran scatter plot. The slope of the linear smooth line of the scatter
plot is consistent with theMoran's I value. In this study, we used GeoDa
1.14 to calculate theMoran's I and to draw theMoran scatter plots. Con-
tiguity of provinces is set based on Fig. S1 and Table S1 in the Supple-
mentary Material.

2.2.2. Spatial panel models
The spatial econometric model primarily analyzes the interaction

and interdependence of spatial regions. First, a simple pooled regression
model with space-specific effects but without spatial interaction effects
was considered (Elhorst, 2010). The simple pooled linear regression
model can be written as Eq. (5), where t is an index for the time dimen-
sion (years in this study), with t = 1,…,T. yit is the dependent variable
(SO2 or NOX emissions in this study) at i and t, xit represents the vector
of the independent variables at i and t, and β represents the coefficient
vector. ui denotes a spatial-specific effect for i, while εit is an error term
for i and t.

yit ¼ βxit þ ui þ εit ð5Þ

The standard reasoning behind spatial-specific effects is that
they control all space-specific time-invariant variables, the omis-
sion of which could bias the estimates of a typical cross-sectional
study.

The spatial econometric model can effectively solve the spatial de-
pendence problem. In order to examine andmeasure possible spatial ef-
fects, two types of spatial econometric models were considered—the
spatial lag model (SLM) and the spatial error model (SEM). The SLM
can be interpreted as containing endogenous interaction effects
among the dependent variables and can be expressed as Eq. (6),
where δ is the spatial autoregressive coefficient and Wij′ is the row-
standardized spatial weight matrix (Wij).

yit ¼ δ
XN
j¼1

Wij0yjt þ βxit þ ui þ εit ð6Þ
The SEM considers that the dependent variable depends on a set of
observed local characteristics and that the error terms are correlated

across space. The SEM can be written as Eq. (7), where
PN

j¼1 Wij0ϕit de-
notes the interaction effects among the disturbance terms of the differ-
ent units and λ refers to the spatial autocorrelation coefficient. ϕit

reflects the spatially autocorrelated error term.

yit ¼ βxit þ ui þ ϕit

ϕit ¼ λ
XN
j¼1

Wij0ϕit þ εit
ð7Þ

2.2.3. Model selection
As fixed-effect and random-effect models are often used for panel

data analysis, it is necessary to choose a suitable model. Here, a series
of Hausman tests was performed to identify the presence of
endogeneity in the explanatory variables in order to effectively estimate
random and fixed effects.

After the onemodel was chosen, the LM test was applied for further
model selection (SLM or SEM). The four tests pertaining thereto were
the LM-lag, LM-error, robust LM-lag, and robust LM-error tests. When
the standard versions (i.e., LM-lag or LM-error) were both significant,
the robust versions were conducted. We used R 3.6.1 and Stata 16 for
panel spatial regression analyses and the related tests.

3. Results

3.1. Temporal and spatial distribution of air pollution

According to the China Statistical Yearbook,9 in China the total na-
tional emissions of SO2 decreased from 22.18 Mt. in 2011 to 8.75 Mt.
in 2017, and those of NOx decreased from 24.04 Mt. in 2011 to 12.59
Mt. in 2017. These figures show that national pollutant emissions have
gradually receded in recent years. As shown in Fig. 1, which details the
spatial distribution of air pollutant emissions, the emissions have also
been decreased over the years throughout the country. Comparing re-
gions, the emissions in the central and southern parts of China have
largely decreased, but emissions are still relatively high in the northern
part of China.

3.2. Spatial autocorrelation

The Moran's I statistics were used to test the spatial autocorrelation
of air pollutants in China. Table 3 lists theMoran's I statistics for SO2 and
NOX emissions in China from 2011 to 2017. As shown in the table, the
Moran's I values were positive and statistically significant at the 5% or
10% level for almost every year. Comparing the two emissions, the

http://www.stats.gov.cn/tjsj/ndsj/
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positive autocorrelation is stronger for NOX. These results indicate that
there were positive spatial autocorrelations for SO2 and NOX, which in
turn indicate that areas with high emissions tend to cluster together.

The spatial clustering and heterogeneity were further confirmed by
the Moran scatter plots (Fig. 2). Most provinces are located in the first
and third quadrants, which reveal a positive spatial autocorrelation of
the SO2 and NOX emissions. The scatter plots show that provinces
with high SO2 and NOX emissions (Hebei, Henan, Shanxi, Inner
Table 3
Moran's I statistics for SO2 and NOX emissions from 2011 to 2017.

SO2 NOX

Year Moran's I z-value p-Value Moran's I z-value p-Value

2011 0.242 2.333 0.018 0.280 2.650 0.011
2012 0.193 1.916 0.042 0.267 2.544 0.013
2013 0.187 1.859 0.046 0.249 2.402 0.019
2014 0.176 1.763 0.050 0.248 2.403 0.018
2015 0.193 1.919 0.042 0.260 2.502 0.014
2016 0.117 1.325 0.097 0.155 1.606 0.055
2017 0.096 0.112 0.136 0.185 1.878 0.042
Mongolia, and Shandong) and those with low pollutant emissions
(Zhejiang, Hainan, Xizang, and Qinghai) are located in the first and
third quadrants.
3.3. Spatial econometric analysis

To select appropriate models (fixed-effect or random-effect), the
Hausman test was conducted. The p values of the Hausman test were
close to zero for both SO2 and NOX. Therefore, fixed-effect models
were selected.

LM tests were then conducted to select the appropriate spatial
model. The results of the LM-lag and LM-error tests for SO2 and NOx
were close to zero (Table 4), meaning that all models passed the signif-
icance level of 1%. Therefore, we conducted the robust LM tests. The p
values for the robust LM-lag tests passed the significance level of 1%,
while the robust LM-error tests did not (Table 4). Therefore, the SLM
ismore suitable for both SO2 andNOx emissions. Based on theHausman
tests and LM tests, the fixed-effect SLM was selected for all
specifications.
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Fig. 2.Moran scatter plots for two air pollutant emissions in the selected years.
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Table 5 presents the results for non-spatial fixed-effect estimates
(not considering spatial effect) and the fixed-effect SLM. The models
were estimated taking into consideration the fixed effects of cross-
Table 4
LM test results.

SO2 NOX

LM-lag test 2.08 × 10−11 2.20 × 10−16

LM-error test 2.57 × 10−6 3.50 × 10−9

Robust LM-lag test 5.39 × 10−7 1.66 × 10−10

Robust LM-error test 0.13 0.99
section only (individual) and both cross-section and year (two-way).
The study also used thefixed-effect SEM (see Table S2 in Supplementary
Material).10 Note that as the spatial autocorrelation exists for SO2 and
NOX emissions, as shown in Section 3.2, the fixed-effect SLM is the ap-
propriate model for this study. Therefore, the results are explained
based on that model (with a two-way fixed effect).

With regard to socioeconomic factors, the results show that the coef-
ficients for POPwere positive and statistically significant at the 1% level for
10 The results of the fixed-effect SLM and the fixed-effect SEM were similar.



11 Hao and Liu (2016) indicated the possibility of an inverted U-shaped relationship be-
tween PM2.5/AQI and per-capita GDP with their OLS and SEM estimations. However, such
results were seldom shown with the SLM estimations, which this study employed.

Table 5
Results of fixed-effect model without spatial effect and SLM for two air pollutants.

Non-spatial fixed-effect model Fixed-effect SLM

SO2 NOX SO2 NOX

Individual FE Two-way FE Individual FE Two-way FE Individual FE Two-way FE Individual FE Two-way FE

POP −859.14*** −778.77*** −589.96*** −511.94** 84.08*** 79.15*** 107.39*** 98.63***
(176.74) (178.61) (131.85) (135.35) (8.39) (9.46) (7.07) (7.77)

PD 35.28 21.54 13.35 −7.41 −68.04*** −74.09*** −40.42*** −50.47***
(28.38) (21.31) (201.4) (20.67) (16.82) (16.86) (13.90) (13.86)

URB (×1000) −26.37*** −19.62** −18.92*** −6.13 3.09 1.79 5.82** 5.9**
(4.89) (9.42) (3.90) (8.03) (3.30) (3.64) (2.73) (2.99)

PCGRP 1.91 3.93 0.64 4.25 −4.30** −3.35* −3.86** −2.89*
(1.70) (2.87) (1.38) (2.73) (1.90) (2.01) (1.57) (1.65)

SDA_GRP (×100,000) 19.42*** 15.16** 19.56*** 11.47** 9.82*** 12.28*** 12.64*** 16.38***
(4.19) (4.65) (3.34) (4.57) (2.50) (2.79) (2.05) (2.30)

DD −53.39 30.13 −24.38 8.91 33.95 46.47* 51.75*** 50.09**
(40.28) (28.01) (26.13) (24.07) (22.74) (24.70) (18.83) (20.30)

PRE 16.09 −4.22 −32.72 −39.56 −146.45*** −129.68** −33.03 −40.22
(40.76) (30.74) (32.91) (32.24) (56.79) (59.48) (46.67) (48.85)

RHU (×1000) −1.68 −3.03 −2.57 −3.37 −4.62* −6.23** −8.26*** −10.11***
(2.99) (3.03) (2.69) (2.81) (2.59) (2.68) (2.13) (2.20)

Adjusted R2 0.91 0.94 0.94 0.95 – – – –
Log likelihood – – – – −3005.07 −2997.32 −2962.44 −2954.53

Notes: Robust standard errors in parentheses. *** p b 0.01, ** p b 0.05, and * p b 0.1. Non-spatial fixed-effectmodels do not consider the spatial effects. The number of observations is 217 for
all analyses.
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both SO2 and NOX. This suggests that SO2 and NOX emissions increase
with increasing population. Furthermore, the coefficient for URB was
also positive and statistically significant for NOX, which means that NOX

emissions increase with increasing urbanization. Similarly, the coeffi-
cients for SDA_GRP were positive and statistically significant for SO2 and
NOX; the higher the ratio of the added value of secondary industry to
GRP, the more SO2 and NOX will be emitted. However, the effects of PD
on SO2 and NOX emissions were negative and statistically significant at
the 1% level. Similarly, the estimated effect of PCGRP was also negative
and statistically significant for both emissions. These results suggest that
increases in population density and per-capita GRP decrease SO2 and
NOX emissions.

For natural factors, the coefficients for DDwere positive and signifi-
cant for SO2 and NOX emissions. In contrast, PRE and RHUwere negative
and statistically significant for SO2 or NOX emissions. Therefore, in-
creases in the temperature-related variable, in terms of degree days, in-
crease pollutant emissions, while increases in precipitation and relative
humidity reduce emissions.

4. Discussion

The results of the spatial autocorrelations and the influencing factors
in Section 3 are important in developing environmental policies. Here,
we discuss the results based on the Moran's I statistics and the two-
way fixed-effect SLM.

The Moran's I statistics and the Moran scatter plots for the SO2 and
NOX emissions indicated there were positive and statistically significant
spatial autocorrelations in most years. These results suggest clustering
trends. Therefore, to improve air pollution neighboring provinces
should strengthen cooperation and formulate local control measures,
in addition to the efforts of individual provinces.

With regard to the SLM estimates, of the socioeconomic factors popu-
lationwas positive and statistically significant for both SO2 andNOX emis-
sions. Increasing population growth and energy demand (including fossil
fuels) eventually cause an increase in air pollutants. In other words, the
more people the more serious the pollution will be. This is consistent
with the findings in the literature (e.g., Liu et al., 2017). Regarding the ur-
banization rate and the ratio of value added of secondary industry, they
were positive and statistically significant for SO2 and NOX. Urbanization
is associated with increases in people, traffic, industry, and energy con-
sumption (S. Zhao et al., 2018). Similarly, energy-intensive secondary in-
dustry stimulates theuse of fossil fuels. Therefore, these factors both cause
an increase in air pollution, which is consistentwith the findings of previ-
ous studies (Liu et al., 2017; Huang, 2018; Hao et al., 2020). In this study,
we verified that the ratio of value added of the secondary industry was
significantly positive not only for SO2 emissions (Huang, 2018) but also
for NOX emissions. Regarding population density, this study showed it
had a negative and statistically significant effect on SO2 and NOX emis-
sions. Population density can effect either a decrease or an increase in
air pollution (Brajer et al., 2011; Hao and Liu, 2016; Huang, 2018). An in-
crease can occur due to a higher degree of urbanization and industrializa-
tion, and a crowd effect (Hao and Liu, 2016; Huang, 2018). In contrast, a
decrease can occur due to the intensive use of energy and a civilization ef-
fect (Hao and Liu, 2016; Huang, 2018). Furthermore, big cities have ad-
vantages in improving the level of public administration, and a higher
population density can improve the urban environment in various ways
(Stone, 2008; Cheng et al., 2017). Although both positive and negative ef-
fects are possible, the negative effect was stronger in this study, as it was
inHuang (2018). Different fromHuang (2018),who evaluated the impact
on SO2 emissions, we found that population density reduced NOX emis-
sions. These results suggest that while considering population accumula-
tion, we should continuously improve the efficiency of resource
utilization and the environmental literacy of citizens to effectively allevi-
ate air pollution. Finally, per-capita GRPwas negative and statistically sig-
nificant for both SO2 and NOX emissions. This indicates that with China's
economic growth and increasing wealth, the air pollution situation has
improved. Thismay be due to citizens' consciousness and eco-friendly be-
haviors (Duroy, 2008). In addition, as technology advances, the emission
of pollutants per unit of production decreases as income increases (Park
and Lee, 2011). Such a relationship between pollutants and per-capita
GRP is consistent with the findings of previous studies (e.g., Yang et al.,
2017b; Zhou et al., 2018). However,Wang et al. (2016) found an inverted
U-shaped relationship between SO2 emissions and per-capita GRP, often
called the environmental Kuznets curve. With the non-spatial fixed-
effect model, we also found a similar relationship to that found by
Wang et al. (2016) (see Table S3 in Supplementary Material). However,
this relationship disappeared by including spatial effects in this study
(i.e., fixed-effect SLM). This is almost consistent with Hao and Liu
(2016).11 Based on the results of the Moran's I statistics and the Moran
scatter plots, it is essential to consider the spatial effects in analyzing
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SO2 and NOX emissions. Furthermore, the fixed-effect SLMmodel was se-
lectedbasedon the statistical tests. Because the other variableswere iden-
tical among the models employed in this study, such relationships may
only appear because the spatial effects were considered. The other differ-
ences in the results between non-spatial and SLM models (Table 5) are
also considered due to the existence of the spatial effects.

In addition to the socioeconomic factors, the impact of natural fac-
tors on air pollution cannot be ignored. As shown in Table 5, the coeffi-
cients for degree days were positive and statistically significant for both
the pollutant emissions. This is related to China's energy consumption
during the heating and cooling seasons, particularly the heating season
when coal is extensively used for heating. This study used the degree
days instead of temperature, which is often used in the literature
(Yang et al., 2017a; Feng et al., 2019), as the independent variable.
This is because temperature cannot express the effect of cold winters
and hot summers when heating and cooling demands increase with a
linear modeling framework. Although the impact of temperature on
air pollution has been evaluated in the literature, this study found that
degree dayswere an important factor in determining the level of air pol-
lution. This is because energy demand is significantly influenced by
temperature (Wan et al., 2011; De Cian et al., 2013; Cui et al., 2017). Fi-
nally, precipitation and relative humidity both had a negative and statis-
tically significant effect on the air pollutant emissions. Precipitation and
humidity can regulate the temperature and cause pollutants to settle
and dissolve (Li et al., 2014; Whiteman et al., 2014; Yang et al., 2017a;
Bai et al., 2019), which consequently reduces the pollution levels.

Although the significant factors and the degrees differ to some ex-
tent by the type of air pollutant, this study comprehensively confirmed
the factors affecting multiple air pollutants. The results in this study
were mostly consistent with those of most previous studies, as
discussed above. As stated in Section 1, this study improved the estima-
tion methods (i.e., spatial panel econometric models) with multiple air
pollutants and both socioeconomic and natural factors. With more ap-
propriate and comprehensive estimation methods, this study helped
improve understanding of the determinants of air pollution discharge.
Furthermore, the findings provide effective information for determining
air pollution control measures in China.
5. Conclusions

Due to China's rapid economic growth and high levels of energy con-
sumption, the problem of air pollution has been one of themost impor-
tant environmental and social issues. In this study, we conducted spatial
autocorrelation and spatial panel regression analyses for SO2 and NOX

emissions using the panel data of 31 provinces during the period
2011–2017 to comprehensively understand the factors affecting the
air pollutant emissions. Our findings can be summarized as follows.
Overall, in China the emissions of the two pollutants were on a down-
ward trend during the study period. However, the emissions in the
northern part of China are still relatively high. Furthermore, the air pol-
lution showed significant and positive spatial autocorrelation. Based on
the spatial panel econometric analyses, we found that both socioeco-
nomic factors and natural factors significantly affected the emissions.
Of these factors, the population, urbanization rate, ratio of added value
of secondary industry to GRP, and degree days had positive and statisti-
cally significant effects, while population density, per-capita GRP, pre-
cipitation, and relative humidity had inhibitory effects. Our analysis
revealed that the models with and without spatial effects had different
results. Therefore, considering the characteristics of air pollutants, it is
necessary to incorporate spatial effects in the models to correctly esti-
mate and understand the factors that affect air pollution.

Having identified the key influencing factors and spatial effects of air
pollution, we believe there is an urgent need to adopt more efficient air
pollution prevention and control strategies to promote sustainable de-
velopment. Based on thefindings of this study,we suggest the following
two policy implications to reduce air pollution. As it is usually not pos-
sible to control natural factors, here we address socioeconomic aspects.

1. Promotion of regional cooperation: The spatial autocorrelation of the
two air pollutant emissions indicated that each province and its
neighbors influenced each other. However, because the geographical
location, economic levels, and resources possesseddiffer by province,
the policy goals and capabilities of each province also differ. Consid-
ering such circumstances, the efforts of individual provinces are not
enough to significantly reduce air pollution. Therefore, the provinces
need to strengthen regional cooperation and joint governance with
neighboring provinces to further mitigate air pollution. Indeed, the
joint prevention and control of air pollution in the Beijing-Tianjin-
Hebei region and surrounding areas, which is a mechanism of inter-
regional cooperation to overcome the issue, helped to improve re-
gional air quality (Song et al., 2020). Therefore, expanding such
efforts to other provinces (e.g., by reaching consensus on the overall
interests of the region, using institutional resources to break the
boundaries of administrative regions, and coordinating with each
other) will be effective to further reduce emissions. Such a joint
mechanism is also a cost-efficient method to reduce air pollutants
(Wu et al., 2015). Furthermore, when strengthening joint prevention
and controlmechanisms among regions, innovative pollution control
and responsibility models also need to be established, focusing on
environmental planning and legislation relating to urban agglomera-
tion planning.

2. Socioeconomic structure change and sustainable development: From
the socioeconomic perspective, the spatial econometric analyses in-
dicated that increasing population density would contribute to air
pollution mitigation. Developing compact cities and compact urban
areas is a possible way to increase population density. Because com-
pact cities and compact urban development decrease energy de-
mand per capita and promote energy efficiency (Fertner and
Große, 2016), such approaches would contribute to the reduction
of air pollutants. Our analyses also indicated that reducing the ratio
of value added of secondary industry to GRP and increasing per-
capita GRP would facilitate air pollution mitigation. Because air pol-
lutants are emitted mainly as a result of the combustion of fossil
fuels in the industrial point sources (Zhang and Crooks, 2012), reduc-
ing the proportion of secondary industry and increasing the propor-
tion of tertiary industry (service industry), which emits much fewer
air pollutants than secondary industry, is essential. In other words,
the transition of the economic structure from secondary industry-
oriented to tertiary industry-oriented should be a priority for China
to effectively reduce air pollutants and solve the air pollution prob-
lem. For example, the introduction of environmental tax and prefer-
ential tax policies can promote the development of greener industry.
Furthermore, servicizing is a way to promote such transition, which
can also promote sustainable development (Rothenberg, 2007).
This way of economic growth also increases per-capita GDP/GRP,
which helps improve people's environmental awareness (Duroy,
2008) and alleviate air pollution.
As a developing country, China has been plagued by air pollution for

a long time. The results of this study can provide important insights not
only for Chinese domestic policymakers but also for other emerging
economies. At the same time as developing countries increase industri-
alization andurbanization, their energy consumption needs to be recog-
nized as an important contributor to emissions. It is suggested that
developing countries should not only hasten the upgrading of industrial
structures but also strengthen regional cooperation according to the ac-
tual conditions of each area.
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